CBSE Maths 12 Science MCQ Application of Integrals Solutions in English to enable students to get Solutions in a narrative video format for the specific question.

Expert Teacher provides CBSE Maths 12 Science MCQ Application of Integrals Solutions through Video Solutions in English language. This video solution will be useful for students to understand how to write an answer in exam in order to score more marks. This teacher uses a narrative style for a question from Application of Integrals not only to explain the proper method of answering question, but deriving right answer too.

Please find the question below and view the Solution in a narrative video format.

** Question:**

** Find the area of smaller region bounded by the ellipse and the line . **

** Solution Video in** **English****:**

**Question 1** : Using the method of integration find the area of the region bounded by lines:

2x + y = 4, 3x - 2y = 6 and x - 3y + 5 = 0.

(View Answer Video)

**Question 2** : Find the area enclosed by the parabola and the line x - y = 4. (View Answer Video)

**Question 3** : Find the area of smaller region bounded by the ellipse and the line . (View Answer Video)

**Question 4** : Find the area of the smaller region bounded by the ellipse and the line (View Answer Video)

**Question 5** : Using integration find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2). (View Answer Video)

**Question 1** : Differentiate the function with respect to x. (View Answer Video)

**Question 2** : Differentiate the function with respect to x. (View Answer Video)

**Question 3** : Differentiate w.r.t.x the function , for some constant a and b. (View Answer Video)

**Question 4** : Using the fact that and the differentiation, obtain the sum formula for cosines. (View Answer Video)

**Question 5** : Differentiate the function w.r.t.x . (View Answer Video)

**Question 1** : Equation of normal to the curve x+y=x^y where it cuts x-axis; is (View Answer Video)

**Question 2** : The line is a tangent to the curve at the point. (View Answer Video)

**Question 3** : It is given that at x=1, the function attains its maximum value on the interval[0,2]. Find the value of a? (View Answer Video)

**Question 4** : A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm. (View Answer Video)

**Question 5** : The normal to the curve passing (1,2) is____________. (View Answer Video)

**Question 1** : Solve the differential equation:

(View Answer Video)

**Question 2** : Solve the differential equation (View Answer Video)

**Question 3** : Solve the following differential equation :

(View Answer Video)

**Question 4** : Find the sum of the order and the degree of the following differential equation:

(View Answer Video)

**Question 5** : Write the differential equation representing the curve where a is an arbitrary constant. (View Answer Video)